Dulles Town Center Building One

Dulles, Virginia

Technical Report I

Prepared for: Dr. Linda Hanagan Prepared by: David Geiger - Structural Option September 29, 2008

Table of Contents

I.	Executive Summary	3
II.	Introduction	4
III.	Structural System Overview	5
IV.	Material Strengths	7
V.	Codes	8
VI.	Dead and Live Loads	9
VII.	Lateral Loading Seismic Loads Wind Loads	11 12
VIII.	Preliminary Design Analysis	15
IX.	Appendix A	16
X.	Appendix B	39

Executive Summary

In this first technical report the existing structural conditions of Dulles Town Center Building One are analyzed and discussed through a series of detailed descriptions and figures of the foundation, floor, column, and lateral systems. Current standards and designer standards will be used to help explain the design.

Building One is primarily a reinforced concrete structure. The structure uses caisson, slab on grade, concrete column, flat slab, and post-tension beam and non-post-tension one-way slab systems. Hollow structural steel (HSS) is also used as support for the curtain wall system along the east face. Lateral loads are resisted by ordinary reinforced concrete moment frames in the East-West direction and eccentrically braced frames made of HSS members in the North-South directions.

Seismic loads were calculated using the Equivalent Lateral Force Procedure, which is found in ASCE 7-05, Section 12.8. Through the use of diagrams, tables, and equation 12.8-1, the base shear was calculated. With the base shear and equation 12.8-12, the seismic shear at each floor was determined. Due to the location of Dulles Town Center Building One and the type of lateral force resisting system utilized, seismic loads did not control. This differed from the findings of the engineer. When compared to the loads used by the designer, the seismic base shear I obtained was much lower. Possible reasons will be explained later in the report.

A wind analysis was also performed using the Analytical Procedure outlined in ASCE 7-05, Section 6.5. The building's west face is slightly curved, but for calculation purposes it was conservative to assume the building to be rectangular. After the base shear was calculated, it was determined that wind loads controlled.

Finally, spot checks were conducted on a typical continuous beam, floor slab, and column. The post-tensioned continuous beam was analyzed as a non-post-tensioned beam and failed in all three spans proving that post-tensioning is needed for the long spans. The one-way slab system was checked, as well, and my calculations for the reinforcement came close to the current design. The thickness of the slab, however, was not thick enough. The column was analyzed with only considering gravity loads and ended up being considered as overdesigned. Reasons for these conclusions will be discussed later in the report.

Introduction

The Dulles Town Center Building One project consists of seven stories of office space above grade and one story below grade that includes rentable space, storage, mechanical rooms, a loading area, a trash room, building service offices, and a workout space. It is located in Dulles, Virginia; five minutes north of Dulles International Airport and 25 miles outside of Washington, D.C. The building's architectural use of precast concrete and glass curtain-wall have helped set the tone for the modernist themes conveyed along the Route 28 corridor. At night, this building is one of the most recognizable buildings along Route 28 with its linear neon focal points.

The building is approximately 202,000 square feet and reaches a height of 118 feet above grade. The building has an open floor plan and an average floor-to-floor height of 12'-6" making it ideal for office space. A typical bay is 20 feet by 40 feet, and consists of a post-tension concrete beam and non-post-tension one-way slab system.

The post-tension concrete beams allow for long spans and an open floor area, making it flexible for any tenant. The large bays, however, place large loads on the beams and in effect, post-tensioning is needed. Large bays leave little room for a lateral system. This report will begin to focus on these issues through the use of simplified and detailed analysis.

Structural System Overview

Foundation

The foundation system consists of a slab on grade with strap beams and caissons. The slab is 5" thick and reinforced with 6x6 - W2.0xW2.0 welded wire fabric. It sits on a 6 mil. polyethylene vapor barrier over 6" of washed, crushed stone. Strap beams ranging from 24"x 36" to 48"x 48" rest on a 2'-0" thick foundation wall to help support the slab at grade changes. The cast-in-place caissons are capped with reinforced concrete and have shaft diameters that range from 30" to 75".

Columns

The vertical supporting elements are reinforced rectangular concrete columns with widths that range from 1'-0" to 9'-2". These 12" x 110" columns help support the stairwell and could act as small shear walls. Vertical reinforcement ranges in size from #8 to #11 rebar with #3 horizontal stirrups. The typical column is 24" x 24" with reinforcement consisting of (8) #8 vertical rebar, (3) #3 stirrups spaced at 3" on center, and a hooked dowel extending 2'-6" minimum into the floor slab. These columns are also used for lateral resistance.

Floor Systems

The ground floor is flat slab construction consisting of an 8" thick slab with a bottom bar mat of #4 rebar at 10" on center each way. At column locations there are $5 \frac{1}{2}$ " drop panels and heavy reinforcement. The typical floor is a post-tensioned beam and nonpost-tensioned one-way slab system. The 7" thick slab is of normal weight with continuous edge drops that are 3' wide and $5 \frac{1}{2}$ " deep along the east face to help support the precast concrete and ribbon window façade. The typical bay size is 20' x 40' with a typical beam length of 40'. Slab reinforcement consists of #4 top bars spaced at 6" on center and #4 bottom bars at 12" on center. Reinforced concrete beams are located at stairwells and elevator shafts. The second-floor is unique in that steel C and HSS members cantilever over the east entrance to support the curtain wall above. The penthouse floor system is the same as the typical system, but has a 9" thick slab due to mechanical equipment.

Lateral System

The lateral resistance system is comprised predominantly of concrete moment frames with typical columns being 24" x 24". In addition, there is an eccentrically braced steel frame, or K-Brace, located on the roof within the architectural fin. This consists mostly of galvanized steel HSS members connected by fillet welds. The K-Brace is fillet welded to a 12" x 1'-0" x $\frac{1}{2}$ " steel plate tied into the concrete roof with (4) $\frac{3}{4}$ " dia. x 12" galvanized lightgage studs.

Roof System

The typical roof system also consists of a post-tension beam and non-post-tension oneway slab system. This typical roof system is just like the typical floor system in thickness, reinforcement, bay size, and beam length. Slab areas that support mechanical equipment, however, are 9" thick and have #5 top bars at 8" on center and #4 bottom bars at 6" on center. The penthouse roof differs with its 8" thick slab and #6 top barand #5 bottom bar- reinforcement at 12" on center.

Figure 1

Material Strengths

Concrete

$f'_{c} = 5,000 \text{ psi}$
f′ _c = 5,000 psi
f′ _c = 4,000 psi
f′ _c = 4,000 psi
.f'c = 4,000 psi
f′ _c = 3,500 psi
.f' _c = 3,000 psi
.f' _c = 3,000 psi
.f' _c = 3,000 psi
.f' _c = 3,000 psi

Reinforcement

Welded Wire Fabric	F _y = 70,000 psi
Reinforcing bars	F _y = 60,000 psi
Column and pier ties	F _y = 40,000 psi

Structural Steel

Wide flange shapes	$F_y = 50,000 \text{ psi}$
Hollow Structural Steel (HSS)	.F _y = 50,000 psi
Channels	.F _y = 36,000 psi
Angles	.F _y = 36,000 psi
Plates	.F _y = 36,000 psi

Codes

• Original Design:

Building Code BOCA, National Building Code, 1996 Virginia Uniform Statewide Building Code

Concrete American Concrete Institute (ACI), ACI 318

Lateral Loads BOCA, National Building Code, 1996

Design Loads and Standards

BOCA, National Building Code, 1996 American Society of Civil Engineers (ASCE), ASCE 7 CABO ANSI A-117

• Substitutions for Thesis Analysis:

Building Code

American Society of Civil Engineers (ASCE), ASCE 7-05 International Building Code (IBC) 2006

Concrete American Concrete Institute (ACI), ACI 318-08

Lateral Loads American Society of Civil Engineers (ASCE), ASCE 7-05

Design Loads and Standards

American Society of Civil Engineers (ASCE) ASCE 7-05 International Building Code (IBC) 2006

Dead Loads and Live Loads

Dead Loads

The following weights were calculated using 150 pcf for reinforced concrete, an assumed 15 psf for ceiling load, an assumed 15 psf for the curtain wall system, an assumed 3 psf for metal paneling, and the designated linear weights for steel members.

	Dead Loads						
	Building Component	Weight (kips)			Building Component	Weight (kips)	
Ground Le	vel			Level 7			
	Slab	2480]		Slab	2188	
	Drop Panels	284			Ceiling	381	
	Non-PT Beams	127]	Non-PT Beams		76	
	Dropped Slab Edge	284]		Dropped Slab Edge	487	
	Columns	245.6]		PT-Beams	1091	
	Ceiling	372	1		Columns	387	
	Walls	233.4	1		Wall	233.4	
	Total	4026	1		Total	4843.4	
Level 2	Level 2		1	Roof			
	Slab	2223			Slab	2415	
	Ceiling	381]		Ceiling	375	
	Non-PT Beams	70.3	1		Non-PT Beams	74.4	
	Dropped Slab Edge	487]		Dropped Slab Edge	487	
	PT-Beams	1091	1		PT-Beams	1109	
	Columns	420]		Columns	287	
	Wall	233.4	1		Wall	116.7	
	Steel	17	1	Penthouse and Architectural Fin			
	Total	4922.7	2	Slab		292	
Level 3 to	Level 6]		Ceiling	43.7	
	Slab	2223			PT-Beams	87	
	Ceiling	381			Columns	287	
	Non-PT Beams	70.3]		Steel	4.4	
	Dropped Slab Edge	487			Metal Panels	31.7	
	PT-Beams	1091					
	Columns	420			Total Roof	5609.9	
	Wall	233.4					
	Total X 4	19622.8					
Total Building Weight = 39,031 k							

Live Loads

Below are the only live loads used for this report's analyses. The designer also used 150 lb/ft^2 for mechanical, 125 lb/ft^2 for the elevator machine room, and 100 lb/ft^2 for slab on grade.

	Floor Live Loads		
Area	Design Load (psf)	ASCE 7-05 (psf)	
Floors	100	100	
Corridors	100	100	
	Roof Live Loads	8:	
Area	Design Load (psf)	ASCE 7-05 (psf)	
Roof Live Load	35	20	
Snow	21	19	

Lateral Loading

• Seismic Loads: ASCE 7-05, Chapter 12

Seismic Forces were determined using the Equivalent Lateral Force Procedure found in Section 12.8. The base shear that I calculated was much smaller than that of the designer's. This can be explained by a few possible causes; the use of different codes, my assumptions on material weights, and my interpretation of the moment-resisting frame system being utilized. I assumed the system was made up mainly of ordinary reinforced concrete moment frames, which alters the response modification coefficient to be smaller than that of the designer's. This change in R ultimately lowered the base shear, enabling wind loads to control. Calculations can be found in the Appendix of this report. Refer to the following tables for variables used and seismic loads.

Occupancy Category		
Site Class		В
Seismic Design Category		A
Short Period Spectral Response	Ss	0.16
Spectral Response (1 sec)	Si	0.051
Maximum Short Period Spectral Response	S _{M5}	0.16
Maximum Spectral Response (1 sec)	S _{M1}	0.051
Design Short Period Spectral Response	S _{DS}	0.107
Design Spectral Response (1 sec)	S _{D1}	0.034
Response Modification Coefficient	R	3
Seismic Response Coefficient	C _s	0.01
Effective Period	Т	
Height Above Grade	h _n	108 ft
Base Shear		391k
Overturning Moment		23,527.81 ft-

Variables Used

Seismic Base Shear										
Floor	Height (ft)	Tributary Height (ft)	Dead Load (kips)	w _x h _x ^k	C _{vx}	Lateral Force (F _x)	Story Shear (V _x)	Overturning Moment (k-ft)		
Ground	0	7.5	4026	0	0	390.31	390.31	23527.81		
Level 2	15	13.75	4927	162084.1	0.0263	10.25	390.31	23527.81		
Level 3	27.5	12.5	4906	352749.8	0.0572	22.32	380.06	18436.37		
Level 4	40	12.5	4906	571985.4	0.0927	36.18	357.74	13807.03		
Level 5	52.5	12.5	4906	812331	0.1317	51.39	321.56	9535.71		
Level 6	65	12.5	4906	1070005	0.1734	67.69	270.17	5803.55		
Level 7	77.5	12.75	4844	1325572	0.2148	83.86	202.48	2801.56		
Roof	90.5	6.5	5610	1875165	0.3039	118.62	118.62	771.03		
		Total	39031	6169892	1.0000	390.31				

Seismic Loads

• Wind Loads: ASCE 7-05, Chapter 6

Wind loads for each level were calculated using the Analytical Procedure found in Section 6.5. Using Equation 6-19, wind loads were determined and used to find the base shear. This shear was higher than that of the seismic base shear and thus controlled. My wind calculations were similar to those of the designer which means my assumptions and analysis method were similar. Refer to the following tables for variables used and wind loads. Refer to Figure 2 and Figure 3 for wind loading. Blue denotes windward forces and red denotes leeward forces.

Gust Factor Variables								
H (ft)	n ₁	gq	gv	g _R				
1 <mark>1</mark> 8	0.549	3.4	3.4	4.057				
V (mph)	b	с	β	α				
90	0.45	0.3	2	7				

Variables Used for All Directions

Variał	oles	IJ	sed
varia	JIES	U	beu

East - West Wind Direction										
ż (ft)	l _z	Lz	В	L	Q	V _z (ft/s)	N1	h		
67.5	0.266	412.72	240	105.5	0.837	71.04	3.4	112.5		
Rn	η _h	R _h	η _в	R _B	ηL	RL	R	G _f		
0.065	4.3	0.206	9.23	0.102	13.58	0.071	0.196	0.83		

Wind Loads

	Wind (East - West Direction)										
Floor	Height (ft)	Tributary Height (ft)	Kz	qz	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (kips)	Story Shear (kips)	Overturning Moment (k-ft)	
Ground	0.00	0.00	0.575	0.000	0.00	0.00	0.00	0.00	411.92	22114.73	
Second	15.00	13.75	0.575	10.130	6.73	-7.48	14.20	46.87	411.92	17990.47	
Third	27.50	12.50	0.683	12.045	8.00	-7.48	15.47	46.42	365.05	13149.40	
Fourth	40.00	12.50	0.761	13.406	8.90	-7.48	16.38	49.13	318.63	8794.95	
Fifth	52.50	12.50	0.822	14.489	9.62	-7.48	17.10	51.29	269.50	5746.76	
Sixth	65.00	12.50	0.874	15.401	10.23	-7.48	17.70	53.11	218.21	3351.09	
Seventh	77.50	12.75	0.919	16.195	10.75	-7.48	18.23	55.78	165.10	1608.62	
Roof	90.50	15.25	0.960	16.928	11.24	-7.48	18.72	68.50	109.32	449.02	
Mean Fin Ht.	112.50	8.75	1.022	18.014	11.96	-7.48	19.44	40.82	40.82	0.00	

V	arial	oles	IJ	seđ
v	aria	JICS	\mathbf{c}	scu

North - West Wind Direction								
ż (ft)	I _z	Lz	В	L	Q	V _z (ft/s)	N ₁	h
70.8	0.264	406.21	105.5	240	0.797	71.89	3.41	118
Rn	η _h	R _h	η _в	R _B	η _L	RL	R	G _f
0.0645	4.485	0.1981	4.01	0.218	28.23	0.0344	0.276	0.87

Wind Loads

Wind (North - South Direction)										
Floor	Height (ft)	Tributary Height (ft)	Kz	qz	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (kips)	Story Shear (kips)	Overturning Moment (k-ft)
Ground	0.00	0.00	0.575	0.000	0.00	0.00	0.00	0.00	155.95	8247.02
Second	15.00	13.75	0.575	10.130	7.04	-4.76	11.80	17.12	155.95	6209.70
Third	27.50	12.50	0.683	12.045	8.37	-4.76	13.13	17.32	138.83	4582.58
Fourth	40.00	12.50	0.761	13.406	9.32	-4.76	14.08	18.57	121.51	3179.77
Fifth	52.50	12.50	0.822	14.489	10.07	-4.76	14.83	19.56	102.94	2015.27
Sixth	65.00	12.50	0.874	15.401	10.71	-4.76	15.47	20.40	83.38	1100.52
Seventh	77.50	12.75	0.919	16.195	11.26	-4.76	16.02	21.55	62.98	472.91
Roof	90.50	20.25	0.960	16.928	11.77	-4.76	16.53	35.31	41.43	84.15
Top of Fin	118.00	13.75	1.036	18.262	12.70	-4.76	17.46	6.12	6.12	0.00

North-South Wind Diagram

Preliminary Design Analysis

Gravity Load Spot Checks

For the spot checks I analyzed the three most common structural components of this building; a column, a continuous beam, and a one-way slab.

A column on the second floor was considered in this analysis. Load combinations such as 1.2D + 1.6L + .5S and 1.2D and 1.6L were used to find gravity loads on the member. Even without live load reduction, it was determined that the column was over-designed by about 600 kips. A possible reason could be that forces unaccounted for add load to this column. The use of different codes could also be a factor.

The continuous beam was analyzed as a typical reinforced continuous beam with no post-tensioning. My shear calculation seemed to be higher in all three spans than that of the original designer. This was seen in my shear reinforcement calculations requiring more stirrups than the beam schedule showed. My calculations also showed that the spans would fail if only typically reinforced, proving the necessity of post-tensioning. The outcome of the shear could possibly be because I used 1.2D + 1.6L instead of another, older, load combination. The post-tensioning of the continuous beam will be analyzed further later in the thesis process.

Using the Direct Design Method to analyze the slab, two things were concluded. The present reinforcement of #4 top bars at 6 inches on center and #4 bottom bars at 12 inches on center both support the moments calculated at their respective places in the slab. The minimum thickness for the slab supported on the beam came out to be larger than that of the actual slab. The only way to get the required thickness down would be to increase β , which you cannot do without changing the bay size, therefore I conclude this is due to code changes.

Refer to Figure 4 in Appendix for locations and calculations of slab, beam, and column.

Seismic

SETSMIC
 DPC

 DPDINARY PERMIPORCOS CONCAPTE MOMENT FRAMES

 R = 3

$$IZ_0 = 3$$
 $C_d = 2.5$
 THOLE $IZ.Z=1$

 CARCARTE RAMENT-RESIGNAU FRAMES
 $C_1 \cdot ott = x - 9$

 CANSERVATIVELY USING PERTITIONE AS THE LEVEL
 $T \le -9$

 CANSERVATIVELY USING PERTITIONE AS THE LEVEL

 $T \le T_n = (ott)(105)^{1/2} = 1.00 \text{ s}$
 $T_5 = \frac{5p_1}{5p_5} = \frac{.034}{.07} = .310$
 $T_5 = \frac{5p_1}{5p_5} = \frac{.034}{.07} = .310$
 $T_L = 0$

 PREC LIMIT ON CALCULATED PERIOD = $C_u T_n = (1.7)(1.08) = 1.84s$
 $T < T_L$
 $C_5 = \frac{5m_1}{T(\frac{5}{3})} = \frac{.034}{.08(\frac{7}{3})} = .01 \le \frac{5m_5}{(\frac{5}{2})} = \frac{.034}{(\frac{7}{3})} = .034$

 W = 37031 K

 BASE SHEAR

 $V = C_1 W = .01 (39051 W) = 390.31$
 $K = .75 + .5(1.08) = 1.29$

Wind

David Geiger- Structural Option Dulles Town Center Building One Technical Report I Page 20

WIND
NORTH-SOUTH WIND

$$\pi_1 = \frac{41.5}{H^3} = \frac{41.5}{(18^3)^3}, \pi_1^2 + 294 \times \frac{5577}{(22.6 (1800)(58))} = 3.51 + .1477 = 41.057 \times \frac{5577}{(2.6 (18^3))^2}, \pi_1^2 + \frac{5577}{(22.6 (1800)(58))} = 3.51 + .1477 = 41.057 \times \frac{5577}{(2.6 (18^3))^2}, \pi_1^2 + \frac{5577}{(22.6 (1800)(58))} = 3.51 + .1477 = 41.057 \times \frac{5577}{(2.6 (18^3))^2}, \pi_1^2 + \frac{5577}{(22.6 (18^3))^2}, \pi_1^2 + \frac{5577}{(1800)(28)}, \pi_1^$$

WIND
NORTH-SOUTH

$$\eta_{b} = \frac{4 \cdot (L(53))(105 \cdot 5)}{71.89} = 41.91$$

 $u_{b} = \frac{4 \cdot (L(53))(105 \cdot 5)}{71.89} = 41.91$
 $u_{b} = \frac{15.4 \cdot (200)}{71.89} (1 - e^{-12(4.01)}) = 1.249 - .0511 (.1177) = .7218$
 $\eta_{b} = \frac{15.4 \cdot (2}{105.5} - \frac{1}{2(10.0)^{2}} (1 - e^{-12(105.23)}) + .045 - .0002 (1) = .0544$
 $g_{b} = \frac{15.4 \cdot (2}{105.5} - \frac{1}{2(20.33)^{2}} (1 - e^{-12(105.23)}) + .045 - .0002 (1) = .0544$
 $g_{b} = 276 = .02$
 $u_{c} = .925 (\frac{141.7}{10} (2.44) \sqrt{(3.4)^{2} + (4.00)^{2} (.120) (.53 + .477 (.034))})$
 $= .276$
 $(g_{b} = .925 (\frac{141.7}{2.53}) = .869$
 $U_{c} = \frac{125}{105.5} = 2.275$
 $u_{involume 0}$
 $U_{convare 0}$

Spot Checks

Figure 4

Above is a diagram of where in the building my spot checks were conducted.

SPOT
 CHECKS
 PLOOR
 SLAG
 DAVID
 SCIENCE
 Z

 Is =
$$\frac{9}{4}$$
, $\frac{4}{12}$
 = $\frac{(20)^3(12)(12)(12)}{12}$
 = 6860 m⁴
 = $\frac{1000}{12}$
 = \frac

	SPOT CHECKS	FLOOR SLAB	DAVID GEIGER	-				
•	lz/e = 20' =	.5; x (lz/1) = 10.32	(·5)= 5.16 > 1.0					
	COLUMN PROPORTO OF Mt	STRIPS SHALL BE ONED TO RESIST 90%	TABLE 13.6.4.4 ACI					
	TOTAL M BEAM C.S SLAB MS SLAB	-11.32 8.09 -11.3 -8.7 6.2 -8.7 -1.5 1.1 -1.5 -1.13 .81 -1.13						
	-11.32 K-FK (9	0% TO CS =-10.2 - 85%	о то вм =-8.7 k-ft to Sc =-1.5 k-ft					
	10% to MS = -1.13 k-FL							
	8.09 k-ft (10% = ,81 k-ft 10% =,81 k-ft							
	SLAB REINF.							
	MAX. SPACINC $Z \times 7'' = 14''$							
	MIN. SPEEL = TEMP. & STRESS REINF.							
	Asmin = .0018 bt = .0018 (96)(7") = 1.21 in 2							
	dstort = 7" - 3/4" -	<u>'</u> 2(.5) = 6"						
	DESCRIPTION	INT SAAAI						
		M +						
	1. My (k-F+)	-11.32 8.09						
	Z, CS SLAB b (in)	96 96						
	4 M = My/a (4 (in)							
	5. Mux 12/1	-1.58 1.13						
	6. R= Mn	-43.75 31.25						
	bdz							
	7. p= (FROM A-50)	VOD) ,0007 .0005		-				
	8 As=pbd	. 4032 , 288						
	1							

Spot check's
 FLOOR_SLAS
 DAVID General
 U

 #***
 dmmn_UTNED_PARX:
 Imax Franchistic Store point, fy = 60000 point, Function TABLE A-4 = .0245
 Mu =
$$\frac{1}{2}$$
 max Franchistic Store point, fy = 60000 point, Function TABLE A-4 = .0245
 Mu = $\frac{1}{2}$ max Franchistic A-4 = .0245

 Mu = $\frac{1}{2}$ max franchistic A-4 for $\frac{1}{2}$ for $\frac{1}{2}$ max franchistic A-4 = .0245
 Mu = $\frac{1}{2}$ max franchistic A-4 = .0245

 Mu = $\frac{1}{2}$ max franchistic A-4 for $\frac{1}{2}$ for $\frac{1}{2}$ max franchistic A-4 = .0245
 Mu = .0245

 Mu = $\frac{1}{2}$ max franchistic A-4 for $\frac{1}{2}$ for $\frac{1}{2}$ max franchistic A-4 = .0245
 Mu = .0245

 Mu = $\frac{1}{2}$ max franchistic A-4 for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ max franchistic A-4 for $\frac{1}{2}$ for $\frac{1$

Continuous Beam

David Geiger- Structural Option Dulles Town Center Building One Technical Report I Page 31

SPOT
 CHECKS
 CONT. BEAM
 DAG

$$V_{c} = 2(1)$$
 $\overline{J} \overline{Souo}^{*} (46'')(141.6'') = 100.5 L
 $\Psi_{c} = 5(1)(.75)(101 L) = 38 L

 (1)
 $V_{s} = \frac{511 L}{.75} - 101 L = 74 L \le 6 J \overline{J} \overline{Souo}(48)(141.6) = 4102 L 4.4 oL

 74 L & 201 L 4.5
 $S_{max} = max$
 $\binom{145}{24''}$

 74 L & 201 L 4.5
 $S_{max} = max$
 $\binom{145}{24''}$
 $A_{max} = max$
 $\binom{125(\overline{1000}(48'')(141')}{6000} = .314 \pm Commans

 $A_{max} = max$
 $\binom{125(\overline{1000}(48'')(141')}{6000} = .314 \pm Commans

 $A_{max} = max$
 $\binom{125(\overline{1000}(48'')(141')}{6000} = .314 \pm Commans

 $S_{10}(15)(17.4'') = .314$
 $S_{10}(141') = .314 \pm Commans

 $A_{max} = max$
 $\binom{125(\overline{1000}(48'')(141')}{6000} = .314 \pm Commans

 $S_{10}(15)(141') = .314 \pm .314 m^{-1} = .04L
 $S_{10}(141') = .314 \pm Commans

 $A_{max} = -max$
 $\binom{125(\overline{1000}(41')}{6000} = .314 \pm .314 m^{-1} = .04L

 $S_{10}(15)(141') = .314 \pm .314 m^{-1} = .24L
 $S_{10}(141') = .314 \pm .314 m^{-1} = .04L

 $S_{10}(15)(141') = .314 \pm .314 m^{-1} = .24L
 $S_{10}(141') = .314 \pm .314 m^{-1} = .34$
 $S_{10}(15)(141') = .314 \pm .314 m^{-1} = .24L
 $S_{10}(141') = .314 \pm .314 m^{-1} = .34$
 $S_{10}(15)(141') = .314 \pm .314 m^{-1} = .24L
 $S_{10}(141') = .344 \pm .34$
 $S_{10}(15)(141') = .314 \pm .344 m^{-1}$$$$$$$$$$$$$$$$$

David Geiger- Structural Option Dulles Town Center Building One Technical Report I Page 32

David Geiger- Structural Option Dulles Town Center Building One

Appendix B

Photos

Rendering of Southwest Wiew

Northwest View

East View

Northeast View at Night

